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Preface

Independent component analysis (ICA) is a statistical and computationaideeh

for revealing hidden factors that underlie sets of random variables, nexasats, or
signals. ICA defines a generative model for the observed multivariatevdaitzh) is
typically given as a large database of samples. In the model, the data earabl
assumed to be linear or nonlinear mixtures of some unknown latent vesjadohd

the mixing system is also unknown. The latent variables are assumedussign

and mutually independent, and they are called the independent compondms of t
observed data. These independent components, also called sources or facta@s, can b
found by ICA.

ICA can be seen as an extension to principal component analysis and factor
analysis. ICA is a much more powerful technique, however, capable ohfjrttie
underlying factors or sources when these classic methods fail completely.

The data analyzed by ICA could originate from many different kinds ofiaapl
tion fields, including digital images and document databases, as well as economi
indicators and psychometric measurements. In many cases, the measurements are
given as a set of parallel signals or time series; the term blind sourceasiepas used
to characterize this problem. Typical examples are mixtures of simultarspeesh
signals that have been picked up by several microphones, brain waves rebgrded
multiple sensors, interfering radio signals arriving at a mobilengh or parallel time
series obtained from some industrial process.

The technique of ICA is a relatively new invention. It was for the finste in-
troduced in early 1980s in the context of neural network modeling. ©h1890s,
some highly successful new algorithms were introduced by several resgargbs,

Xvi



Xviii PREFACE

together with impressive demonstrations on problems like the cdgiddy effect,
where the individual speech waveforms are found from their mixtu@a. decame
one of the exciting new topics, both in the field of neural networkseeislly unsu-
pervised learning, and more generally in advanced statistics and signal j[imgcess
Reported real-world applications of ICA on biomedical signal processingjo sig-
nal separation, telecommunications, fault diagnosis, feature extrafitiancial time
series analysis, and data mining began to appear.

Many articles on ICA were published during the past 20 years in a largdbeum
of journals and conference proceedings in the fields of signal processtifigjar
neural networks, statistics, information theory, and various appbicéitlds. Several
special sessions and workshops on ICA have been arranged recently [7,0a13d 8]
some edited collections of articles [315, 173, 150] as well as some maplogon
ICA, blind source separation, and related subjects [105, 267, 149]d@veared.
However, while highly useful for their intended readership, thesstiexj texts typ-
ically concentrate on some selected aspects of the ICA methods only. Ini¢fie br
scientific papers and book chapters, mathematical and statistical preliminaries ar
usually not included, which makes it very hard for a wider audience to gdiin fu
understanding of this fairly technical topic.

A comprehensive and detailed text book has been missing, which would cover
both the mathematical background and principles, algorithmic sokjtéord practical
applications of the present state of the art of ICA. The present boateisded to fill
that gap, serving as a fundamental introduction to ICA.

It is expected that the readership will be from a variety of disciplineshs
as statistics, signal processing, neural networks, applied mathematical aed
cognitive sciences, information theory, artificial intelligence, and engingeBoth
researchers, students, and practitioners will be able to use the bookav&anade
every effort to make this book self-contained, so that a reader with alaskground
in college calculus, matrix algebra, probability theory, and statistiibe able to
read it. This book is also suitable for a graduate level universitysson ICA,
which is facilitated by the exercise problems and computer assignmems v
many chapters.

Scope and contents of this book

This book provides a comprehensive introduction to ICA as a stalsind compu-
tational technique. The emphasis is on the fundamental mathematical paipd
basic algorithms. Much of the material is based on the original researchciaud
in the authors’ own research group, which is naturally reflected in the wegbf
the different topics. We give a wide coverage especially to those digusithat are
scalable to large problems, that is, work even with a large number efrebd vari-
ables and data points. These will be increasingly used in the near fubae MCA
is extensively applied in practical real-world problems instead of theptoplems
or small pilot studies that have been predominant until recently. Regplyggome-
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what less emphasis is given to more specialized signal processing methalasip
convolutive mixtures, delays, and other blind source separation tagsigan ICA.

As ICA is a fast growing research area, it is impossible to include evsgrgrted
developmentin a textbook. We have tried to cover the central contiisiby other
workers in the field in their appropriate context and present an exteisiegraphy
for further reference. We apologize for any omissions of important dmrttons that
we may have overlooked.

For easier reading, the book is divided into four parts.

¢ Part | gives themathematical preliminaries. It introduces the general math-

ematical concepts needed in the rest of the book. We start with a crash course
on probability theory in Chapter 2. The reader is assumed to be familiar wi
most of the basic material in this chapter, but also some concepts more spe-
cific to ICA are introduced, such as higher-order cumulants and multieariat
probability theory. Next, Chapter 3 discusses essential concepts mipati

tion theory and gradient methods, which are needed when developing ICA
algorithms. Estimation theory is reviewed in Chapter 4. A complemgntar
theoretical framework for ICA is information theory, covered in Chapter 5
Part | is concluded by Chapter 6, which discusses methods related to principal
component analysis, factor analysis, and decorrelation.

More confident readers may prefer to skip some or all of the introductory
chapters in Part | and continue directly to the principles of ICA in Part Il

In Part 1, thebasic ICA model is covered and solved. This is the linear
instantaneous noise-free mixing model thatis classic in ICA, and frensore

ofthe ICAtheory. The modelisintroduced and the question of idabilfty of

the mixing matrix is treated in Chapter 7. The following chapters treétereint
methods of estimating the model. A central principle is nongaussjavtityse
relationto ICA is first discussed in Chapter 8. Next, the principlesatimum
likelihood (Chapter 9) and minimum mutual information (Chapter 1@ ar
reviewed, and connections between these three fundamental principles are
shown. Material that is less suitable for an introductory course is edver

in Chapter 11, which discusses the algebraic approach using higher-order
cumulant tensors, and Chapter 12, which reviews the early work on IC&dbas

on nonlinear decorrelations, as well as the nonlinear principal component
approach. Practical algorithms for computing the independent components
and the mixing matrix are discussed in connection with each principle., Next
some practical considerations, mainly related to preprocessing and dimensio
reduction of the data are discussed in Chapter 13, including hintattiffwners

on how to really apply ICA to their own problem. An overview and comparis

of the various ICA methods is presented in Chapter 14, which thus sumesar
Part I1.

In Part 1, differentextension®f the basic ICA model are given. This partis by
its nature more speculative than Part Il, since most of the extenisamesbeen
introduced very recently, and many open problems remain. In an introductory
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course on ICA, only selected chapters from this part may be covered. First,
in Chapter 15, we treat the problem of introducing explicit obsernatinoise

in the ICA model. Then the situation where there are more independent
components than observed mixtures is treated in Chapter 16. In Chapter 17,
the model is widely generalized to the case where the mixing process can be of
a very general nonlinear form. Chapter 18 discusses methods that estimate a
linear mixing model similar to that of ICA, but with quite differensasnptions:

the components are not nongaussian but have some time dependene#ss inst
Chapter 19 discusses the case where the mixing system includes canaluti
Further extensions, in particular models where the components aregerlo
required to be exactly independent, are given in Chapter 20.

e Part IV treats somapplications of ICA methods. Feature extraction (Chap-
ter 21) is relevant to both image processing and vision research. Braimignag
applications (Chapter 22) concentrate on measurements of the electrical and
magnetic activity of the human brain. Telecommunications applications are
treated in Chapter 23. Some econometric and audio signal processing applica-
tions, together with pointers to miscellaneous other applicationsieatetl in
Chapter 24.

Throughout the book, we have marked with an asterisk some sectiaharth
rather involved and can be skipped in an introductory course.

Several of the algorithms presented in this book are available as midtain
software through the World Wide Web, both on our own Web pages arse thb
other ICA researchers. Also, databases of real-world data can be found there fo
testing the methods. We have made a special Web page for this book,a@hietins
appropriate pointers. The address is

www. ci s. hut . fi/projects/icalbook

The reader is advised to consult this page for further information.

This book was written in cooperation between the three authors. Aatien
was responsible for the chapters 5, 7, 8, 9, 10, 11, 13, 14, 15, 180181, and 22;
J. Karhunen was responsible for the chapters 2, 4, 17, 19, and 23;Evi@i@ was
responsible for the chapters 3, 6, and 12. The Chapters 1 and 24 wasnaihtly
by the authors.
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Introduction

Independent component analysis (ICA) is a method for finding underigictors or
components from multivariate (multidimensional) statistical dataatilistinguishes
ICA from other methods is that it looks for components that are Istdlkistically
independentandnongaussianHere we briefly introduce the basic concepts, appli-
cations, and estimation principles of ICA.

1.1 LINEAR REPRESENTATION OF MULTIVARIATE DATA

1.1.1 The general statistical setting

A long-standing problem in statistics and related areas is how to findtabii
representation of multivariate data. Representation here means that we someho
transform the data so that its essential structure is made moreavisibccessible.

In neural computation, this fundamental problem belongs to the areassapen
vised learning, since the representation must be learned from the ddtavithout
any external input from a supervising “teacher”. A good representation asaals
central goal of many techniques in data mining and exploratory data analysis
signal processing, the same problem can be found in feature extracttbalsanin
the source separation problem that will be considered below.

Let us assume that the data consists of a number of variables that weiseveas
together. Let us denote the number of variablesdgnd the number of observations
by T. We can then denote the data by(¢) where the indices take the values
i=1,...,mandt = 1,...,T. The dimensions andT can be very large.



2 INTRODUCTION

A very general formulation of the problem can be stated as follows: Whatcoul
be a function from amn-dimensional space to arrdimensional space such that the
transformed variables give information on the data that is otherwideh in the
large data set. That is, the transformed variables should be the uindddgtorsor
componentshat describe the essential structure of the data. It is hoped that these
components correspond to some physical causes that were involved irotiesgr
that generated the data in the first place.

In most cases, we consider linear functions only, because then the indtigret
of the representation is simpler, and so is its computation. Thusy evanponent,
sayy;, is expressed as a linear combination of the observed variables:

yi(t) = Zw,;jmj(t), fori=1,..n,7=1,...m 1.1)
J

where thew;; are some coefficients that define the representation. The problem
can then be rephrased as the problem of determining the coefficigntsUsing
linear algebra, we can express the linear transformation in Eq. (1.1) asrix mat
multiplication. Collecting the coefficients;; in a matrixW, the equation becomes

Y1 (t) z1(t)

n0) | gy |20 w2

yn(t) T (1)

A basic statistical approach consists of consideringitf{é) as a set of" real-
izations ofrn random variables. Thus each sgtt),t = 1,...,T is a sample of
one random variable; let us denote the random variable;byin this framework,
we could determine the matriW by the statistical properties of the transformed
componentg;. In the following sections, we discuss some statistical propertags t
could be used; one of them will lead to independent component analysis.

1.1.2 Dimension reduction methods

One statistical principle for choosing the matWX is to limit the number of com-
ponentsy; to be quite small, maybe only 1 or 2, and to determWeso that the
y; contain as much information on the data as possible. This leads to a fafmily
techniques called principal component analysis or factor analysis.

In a classic paper, Spearman [409] considered data that consisted of scliael per
mance rankings given to schoolchildrenin different branches of studyleonented
by some laboratory measurements. Spearman then deterfn®dfinding a single
linear combination such that it explained the maximum amount of the i\ariat
the results. He claimed to find a general factor of intelligence, thus fogrfector
analysis, and at the same time starting a long controversy in psygholog
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Fig. 1.1 The density function of the Laplacian distribution, whishaitypical supergaussian
distribution. For comparison, the gaussian density isrgivg a dashed line. The Laplacian
density has a higher peak at zero, and heavier tails. Bothitienare normalized to unit
variance and have zero mean.

1.1.3 Independence as a guiding principle

Another principle that has been used for determirWgs independence: the com-
ponentsy; should be statistically independent. This means that the value of any one
of the components gives no information on the values of the other coemp®.

In fact, in factor analysis it is often claimed that the factors are independent,
but this is only partly true, because factor analysis assumes that the atata h
gaussian distribution. If the data is gaussian, it is simple to ¢immhponents that
are independent, because for gaussian data, uncorrelated components are always
independent.

In reality, however, the data often does not follow a gaussian disioi, and the
situation is not as simple as those methods assume. For example, mawpreal
data sets haveupergaussiawlistributions. This means that the random variables
take relatively more often values that are very close to zero or very large hér ot
words, the probability density of the data is peaked at zero and has helajaae
values far from zero), when compared to a gaussian density of the same variance. A
example of such a probability density is shown in Fig. 1.1.

This is the starting point of ICA. We want to firslatistically independertom-
ponents, in the general case where the datargaussian

1.2 BLIND SOURCE SEPARATION

Let us now look at the same problem of finding a good representatiom o
different viewpoint. This is a problem in signal processing that alsows the
historical background for ICA.
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1.2.1 Observing mixtures of unknown signals

Consider a situation where there are a number of signals emitted by Hoyseal
objects or sources. These physical sources could be, for example, diffeagmt b
areas emitting electric signals; people speaking in the same room, thttsemi
speech signals; or mobile phones emitting their radio waves. Assurtieifihat
there are several sensors or receivers. These sensors are in differanhppsd that
each records a mixture of the original source signals with slighffemint weights.

For the sake of simplicity of exposition, let us say there are thregeying
source signals, and also three observed signals. Denatg(bly 2> (t) andz; () the
observed signals, which are the amplitudes of the recorded signals gbdimte,
and bysi (t), s2(t) andss(t) the original signals. The;(t) are then weighted sums
of thes;(t), where the coefficients depend on the distances between the sources and
the sensors:

z1(t) = a1151(t) + a1252(t) + aizss (1) (1.3)
Tr9 (f) = (12181(75) + (122.92(t) + 12353 (f)
I3 (t) = as31S51 (t) + aggsg(t) + a33S3 (t)

Thea;; are constant coefficients that give the mixing weights. They are assumed
unknownsince we cannot know the valuesaf without knowing all the properties

of the physical mixing system, which can be extremely difficult in genefidie
source signals; are unknown as wellsince the very problem is that we cannot
record them directly.

As an illustration, consider the waveforms in Fig. 1.2. These areetlinear
mixtureszx; of some original source signals. They look as if they were completely
noise, but actually, there are some quite structured underlying seigntals hidden
in these observed signals.

What we would like to do is to find the original signals from the tanes
z1(t),z2(t) andzs(t). This is the blind source separation (BSS) probleiind
means that we know very little if anything about the original sources.

We can safely assume that the mixing coefficienjsire different enough to make
the matrix that they form invertible. Thus there exists a maWixwith coefficients
w;j, such that we can separate theas

s1(t) = w121 (t) + wiwa(t) + wizws(t) 1.4)
s2(t) = warx1 (t) + woowa(t) + wozws(t)
Sg(t) = W3121 (t) + w3222 (t) + w333 (t)

Such a matriXW could be found as the inverse of the matrix that consists of the
mixing coefficientss;; in Eq. 1.3, if we knew those coefficients;.

Now we see that in fact this problem is mathematically similar to the orerevh
we wanted to find a good representation for the random data(ir), as in (1.2).
Indeed, we could consider each sigmg(t),t = 1,...,T as a sample of a random
variablez;, so that the value of the random variable is given by the amplitudes of
that signal at the time points recorded.
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Fig. 1.2 The observed signals that are assumed to be mixtures of soedeglying source
signals.

1.2.2 Source separation based on independence

The question now is: How can we estimate the coefficienjsin (1.4)? We want
to obtain a general method that works in many different circumstances, aadtin f
provides one answer to the very general problem that we started with:ndiradi
good representation of multivariate data. Therefore, we use very geneisticaht
properties. All we observe is the signals, x> andx3, and we want to find a matrix
W so that the representation is given by the original source signas, andss.

A surprisingly simple solution to the problem can be found by aering just
the statistical independence of the signals. In fact, if the signalsargaussianit
is enough to determine the coefficientg, so that the signals

y1(t) = w11 () + wiawe () + wizzs(t) (1.5)
Y2 (t) = worm1 (1) + waswa (t) + wazzs(t)
Y3 (t) = W31T1 (t) + W32Z2 (t) + w333 (t)

are statistically independent. If the signalsy., andys are independent, then they
are equal to the original signads, s, andss. (They could be multiplied by some
scalar constants, though, but this has little significance.)

Using just this information on the statistical independence, we can ie$tictate
the coefficient matriXW for the signals in Fig. 1.2. What we obtain are the source
signals in Fig. 1.3. (These signals were estimated by the FastICAithlgothat
we shall meet in several chapters of this book.) We see that from a dataaset th
seemed to be just noise, we were able to estimate the original souredssigsing
an algorithm that used the information on the independence only. Thisaesl
signals are indeed equal to those that were used in creating the mixturigs inZ
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Fig. 1.3 The estimates of the original source signals, estimateagusnly the observed
mixture signals in Fig. 1.2. The original signals were fowedy accurately.

(the original signals are not shown, but they really are virtual@niital to what the
algorithm found). Thus, in the source separation problem, thénadigignals were
the “independent components” of the data set.

1.3 INDEPENDENT COMPONENT ANALYSIS

1.3.1 Definition

We have now seen that the problem of blind source separation boils tddimaling
a linear representation in which the components are statistically indepentien
practical situations, we cannotin general find a representation where th@nentp
are really independent, but we can at least find components that are as independent
as possible.

This leads us to the following definition of ICA, which will be codsered
in more detail in Chapter 7. Given a set of observations of random variables
(z1(t), z2(2), ..., x5 (t)), wheret is the time or sample index, assume that they are
generated as a linear mixture of independent components:

Ir (f) S1 (1’)

200y 82:(75) (1.6)

n(?) sn(t)

whereA is some unknown matrix. Independent component analysis now corisists o
estimating both the matriA and thes; (), when we only observe the;(¢). Note
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that we assumed here that the number of independent compené&nequal to the
number of observed variables; this is a simplifying assumption siratt completely
necessary.

Alternatively, we could define ICA as follows: find alinear transformatjiven by
amatrixW asin (1.2), so thatthe random variables = 1, ..., n are as independent
as possible. This formulation is not really very different from themious one, since
after estimatingj, its inverse givedv.

It can be shown (see Section 7.5) that the problem is well-defined, thieis,
model in (1.6) can be estimated if and only if the componeptse nongaussian
This is a fundamental requirement that also explains the main differeneedet
ICA and factor analysis, in which the nongaussianity of the data isak&nt into
account. In fact, ICA could be consideredramngaussian factor analysisince in
factor analysis, we are also modeling the data as linear mixtures of saheeying
factors.

1.3.2 Applications

Due to its generality the ICA model has applications in many different asease
of which are treated in Part IV. Some examples are:

¢ Inbrain imaging, we often have different sources in the brain emitedighat
are mixed up in the sensors outside of the head, just like in the bhsit
source separation model (Chapter 22).

¢ In econometrics, we often have parallel time series, and ICA could decompose
them into independent components that would give an insight to thetste
of the data set (Section 24.1).

¢ Asomewhat different application is in image feature extraction, whensave
to find features that are as independent as possible (Chapter 21).

1.3.3 How to find the independent components

It may be very surprising that the independent components can be estimated f
linear mixtures with no more assumptions than their independence. Nawilligy

to explain briefly why and how this is possible; of course, this isttaén subject of
the book (especially of Part II).

Uncorrelatedness is not enough The first thing to note is that independence

is a much stronger property than uncorrelatedness. Consideringigksblirce sep-
aration problem, we could actually find many different uncorrelated repregmgat

of the signals that would not be independent and would not separateuhees.
Uncorrelatedness in itself is not enough to separate the componentss @lsis the
reason why principal component analysis (PCA) or factor analysis cannot separat
the signals: they give components that are uncorrelated, but litte.mo
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Fig. 1.4 A sample of independent compo-ig. 1.5 Uncorrelated mixtures; andz-.
nentss; and s> with uniform distributions. Horizontal axis:z1; vertical axis:z».
Horizontal axis:s;; vertical axis:ss.

Let us illustrate this with a simple example using two independemipoments
with uniform distributions, that is, the components can have anyeglnside a
certain interval with equal probability. Data from two such componentpktted
in Fig. 1.4. The data is uniformly distributed inside a square tuthe independence
of the components.

Now, Fig. 1.5 shows twancorrelated mixturesf those independent components.
Although the mixtures are uncorrelated, one sees clearly that the digtrik are not
the same. The independent components are still mixed, using an ordl@giaing
matrix, which corresponds to a rotation of the plane. One can also sea figt iL.5
the components are not independent: if the component on the horizoistdleexa
value that is near the corner of the square that is in the extreme rigbtclearly
restricts the possible values that the components on the vertical axisean h

In fact, by using the well-known decorrelation methods, we can transéomnyn
linear mixture of the independent components into uncorrelated comgspimanhich
case the mixing is orthogonal (this will be proven in Section 7.4T2)us, the trick
in ICA is to estimate the orthogonal transformation that is left afexadrelation.
This is something that classic methods cannot estimate because they aretased
essentially the same covariance information as decorrelation.

Figure 1.5 also gives a hint as to why ICA is possible. By locatingetihges of
the square, we could compute the rotation that gives the original coemg®. In the
following, we consider a couple more sophisticated methods for astimICA.

Nonlinear decorrelation is the basic ICA method One way of stating how
independence is stronger than uncorrelatedness is to say that independdigse imp
nonlinear uncorrelatedness$f s; ands, are independent, then any nonlinear trans-
formationsg(s;) andh(s2) are uncorrelated (in the sense that their covariance is
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zero). In contrast, for two random variables that are merely uncorrelated, such
nonlinear transformations do not have zero covariance in general.

Thus, we could attempt to perform ICA by a stronger form of decorrefatiy
finding a representation where tlye are uncorrelated even after some nonlinear
transformations. This gives a simple principle of estimating tlagrbaW:

ICA estimation principle 1: Nonlinear decorrelation. Find the matiW¥ so that
for anyi # j, the componentg; andy; are uncorrelatecandthe transformed
componentg(y;) andh(y;) are uncorrelated, whegeandh are some suitable
nonlinear functions.

This is a valid approach to estimating ICA: If the nonlinearities argerly chosen,
the method does find the independent components. In fact, computinigesanl
correlations between the two mixtures in Fig. 1.5, one would immegiats that
the mixtures are not independent.

Although this principle is very intuitive, it leaves open an impottgaoestion:
How should the nonlinearitiegandh be chosen? Answers to this question can be
found be using principles from estimation theory and informati@ot. Estimation
theory provides the most classic method of estimating any statisticdkimdhe
maximum likelihoodhethod (Chapter 9). Information theory provides exact measures
of independence, such amitual informatior(Chapter 10). Using either one of these
theories, we can determine the nonlinear functigasdh in a satisfactory way.

Independent components are the maximally nongaussian comp onents
Another very intuitive and important principle of ICA estimationmigximum non-
gaussianity (Chapter 8). The idea is that according to the central liedrém,
sums of nongaussian random variables are closer to gaussian that thelaigs.
Therefore, if we take a linear combinatign= )", b;z; of the observed mixture
variables (which, because of the linear mixing model, is a linear combimafithe
independent components as well), this will be maximally nongaussiareduals
one of the independent components. This is because if it were a real endfttwo
or more components, it would be closer to a gaussian distributientalthe central
limit theorem.

Thus, the principle can be stated as follows

ICA estimation principle 2: Maximum nongaussianity. Find the local maxima
of nongaussianity of a linear combinatigh= Zl b;z; under the constraint
that the variance of is constant. Each local maximum gives one independent
component.

To measure nongaussianity in practice, we could use, for exampl&utiesis
Kurtosis is a higher-order cumulant, which are some kind of generaizatof
variance using higher-order polynomials. Cumulants have integeatgebraic and
statistical properties which is why they have an important part intieerty of ICA.

For example, comparing the nongaussianities of the components gitiea ayes
in Figs. 1.4 and 1.5, we see that in Fig. 1.5 they are smaller, and thus.B cannot
give the independent components (see Chapter 8).

An interesting point is that this principle of maximum nongaussjashows
the very close connection between ICA and an independently developed technique
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calledprojection pursuit In projection pursuit, we are actually looking for maximally
nongaussian linear combinations, which are used for visualization badmirposes.
Thus, the independent components can be interpreted as projection diresuions.

When ICA is used to extract features, this principle of maximum nongguiss
also shows an important connectiongparse codinghat has been used in neuro-
scientific theories of feature extraction (Chapter 21). The idea in spaxiieg is
to represent data with components so that only a small number of them are"acti
at the same time. It turns out that this is equivalent, in some sitgtto finding
components that are maximally nongaussian.

The projection pursuit and sparse coding connections are related to a dekp res
that says that ICA gives a linear representation thadsisstructured as possible
This statement can be given a rigorous meaning by information-thecaetzepts
(Chapter 10), and shows that the independent components are in many ways easi
to process than the original random variables. In particular, independapioorents
are easier to code (compress) than the original variables.

ICA estimation needs more than covariances There are many other meth-
ods for estimating the ICA model as well. Many of them will be treated is th
book. What they all have in common is that they consider some statthtit are not
contained in the covariance matrix (the matrix that contains the covariancesdret
all pairs of thez;).

Using the covariance matrix, we can decorrelate the components in thegrdin
linear sense, but not any stronger. Thus, all the ICA methods use smmeof
higher-order statisticswhich specifically means information not contained in the
covariance matrix. Earlier, we encountered two kinds of higher-ordernmtion:
the nonlinear correlations and kurtosis. Many other kinds can be usedlas wel

Numerical methods are important In addition to the estimation principle, one
has to find an algorithm for implementing the computations needed. Bedasise t
estimation principles use nonquadratic functions, the computatieeded usually
cannot be expressed using simple linear algebra, and therefore they caitelaequ
manding. Numerical algorithms are thus an integral part of ICA estimatiethods.
The numerical methods are typically based on optimization of some olgectiv
functions. The basic optimization method is the gradient method. a@fcplar
interest is a fixed-point algorithm called FastICA that has been tailoredaoiethe
particular structure of the ICA problem. For example, we could usk bbthese
methods to find the maxima of the nongaussianity as measured by thatebsdlie
of kurtosis.
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1.4 HISTORY OF ICA

The technique of ICA, although not yet the name, was introduced in the E28Ds
by J. Herault, C. Jutten, and B. Ans [178, 179, 16]. As recently reviewed hgrdu
[227], the problem first came up in 1982 in a neurophysiologicalragttiln a
simplified model of motion coding in muscle contraction, the outpuytg)andz. (t)
were two types of sensory signals measuring muscle contractior; &)dnds. (t)
were the angular position and velocity of a moving joint. Then it isutoeasonable
to assume that the ICA model holds between these signals. The nensiamsy
must be somehow able to infer the position and velocity signdls, s»(¢) from the
measured responses(t), - (t). One possibility for this is to learn the inverse model
using the nonlinear decorrelation principle in a simple neural netwidécault and
Jutten proposed a specific feedback circuit to solve the problem. Thisagpis
covered in Chapter 12.

All through the 1980s, ICA was mostly known among French researchéts, w
limited influence internationally. The few ICA presentations in inédional neural
network conferences in the mid-1980s were largely buried under the defuige
terest in back-propagation, Hopfield networks, and Kohonen’s Self-@iggriviap
(SOM), which were actively propagated in those times. Another related fiatd w
higher-order spectral analysis, on which the first international warshas orga-
nized in 1989. In this workshop, early papers on ICA by J.-F. Card66p dnd
P. Comon [88] were given. Cardoso used algebraic methods, especiaky-oigter
cumulant tensors, which eventually led to the JADE algorithm [72].e Tke of
fourth-order cumulants has been earlier proposed by J.-L. Lacoume [REgignal
processing literature, classic early papers by the French group are [22Z80)$389].

A good source with historical accounts and a more complete list of referénces
[227].

In signal processing, there had been earlier approaches in the related problem of
blind signal deconvolution [114, 398]. In particular, the resutsdiin multichannel
blind deconvolution are very similar to ICA techniques.

The work of the scientists in the 1980's was extended by, among othets-
chocki and R. Unbehauen, who were the first to propose one of the pseseost
popular ICA algorithms [82, 85, 84]. Some other papers on ICA antasgeparation
from early 1990s are [57, 314]. The “nonlinear PCA’ approach was introdogétk
present authors in [332, 232]. However, until the mid-1990s, i€Aained a rather
small and narrow research effort. Several algorithms were proposed thiatdyor
usually in somewhat restricted problems, but it was not until laterttie@atigorous
connections of these to statistical optimization criteria were exposed.

ICA attained wider attention and growing interest after A.J. Bell and Ejhdsvski
published their approach based on the infomax principle [35, 36] inrige90’s.
This algorithm was further refined by S.-I. Amari and his co-workemsgitie natural
gradient[12], and its fundamental connections to maximum likelihoahatibn, as
well as to the Cichocki-Unbehauen algorithm, were established. A couplean
later, the present authors presented the fixed-point or FastICA algoi®i0, 192,
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197], which has contributed to the application of ICA to large-scalelprob due to
its computational efficiency.

Since the mid-1990s, there has been a growing wave of papers, wpssimad
special sessions devoted to ICA. The first international worksho@Amias held in
Aussois, France, in January 1999, and the second workshop followetén2D00
in Helsinki, Finland. Both gathered more than 100 researchers workingAmand
blind signal separation, and contributed to the transformation ofttiC#a established
and mature field of research.
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Random Vectors and
Independence

Inthis chapter, we review central concepts of probability theory, sitagjsnd random
processes. The emphasis is on multivariate statistics and random vediatters
that will be needed later in this book are discussed in more detail, imgudor
example, statistical independence and higher-order statistics. The readsuised
to have basic knowledge on single variable probability theoryhab fundamental
definitions such as probability, elementary events, and random variablesraliar.
Readers who already have a good knowledge of multivariate statistics ipamagt
of this chapter. For those who need a more extensive review or mimm@iation on
advanced matters, many good textbooks ranging from elementary ones to advanced
treatments exist. A widely used textbook covering probability, ramdariables, and
stochastic processes is [353].

2.1 PROBABILITY DISTRIBUTIONS AND DENSITIES

2.1.1 Distribution of a random variable

In this book, we assume that random variables are continuous-valuesksthted
otherwise. Theumulative distribution function (cdf), of a random variable: at
pointx = z; is defined as the probability that< zg:

Fy(zo) = Pz < x0) (2.1)

Allowing zy to change from-oc to oo defines the whole cdf for all values of
Clearly, for continuous random variables the cdf is a nonnegative awedsing
(often monotonically increasing) continuous function whose valeds lihe interval

15
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m

Fig. 2.1 A gaussian probability density function with meanand standard deviation.

0 < F,(z) < 1. From the definition, it also follows directly th#, (—oc) = 0, and
F,(+x) = 1.

Usually a probability distribution is characterized in terms of its dgrfanction
rather than cdf. Formally, therobability density function (pdf), (z) of a continuous
random variable: is obtained as the derivative of its cumulative distribution funttio

_ dF,(x)
T dx

Pa(T0) (2.2)

T=IQ

In practice, the cdf is computed from the known pdf by using the inveis¢éionship

Fuw) = [ pa(ede 2.3)
For simplicity, F, (x) is often denoted by'(x) andp. (x) by p(x), respectively. The
subscript referring to the random variable in question must be used wbnfusion
is possible.

Example 2.1 The gaussian (or normal) probability distribution is used in nwuasr
models and applications, for example to describe additive noise. Isitgéinction
is given by

Pe(@) = ——— exp (—ﬂ) (2.4)
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Here the parametern (mean) determines the peak point of the symmetric density
function, andr (standard deviation), its effective width (flatness or sharpness of the
peak). See Figure 2.1 for an illustration.

Generally, the cdf of the gaussian density cannot be evaluated in closedgiomgn
(2.3). The terml/v2no? in front of the density (2.4) is a normalizing factor that
guarantees that the cdf becomes unity whgn— oo. However, the values of the
cdf can be computed numerically using, for example, tabulated values of thre err
function

erf(z) = \/%_ﬁ /Ow exp (—52—2> d¢ (2.5)

The error function is closely related to the cdf of a normalized gaussiaritgefios
which the meamn = 0 and the variance? = 1. See [353] for details.

2.1.2 Distribution of a random vector

Assume now that is ann-dimensionatandom vector
X:(:Ela:E?v"' 7mn)T (26)

whereT denotes the transpose. (We take the transpose because all vectorsankhis b
are column vectors. Note that vectors are denoted by boldface lowercase)ldtters
components;, x», ... , x, Of the column vectoxk are continuous random variables.
The concept of probability distribution generalizes easily to such a randtor.
In particular, the cumulative distribution function »fis defined by
Fy(x0) = P(x < xq) (2.7)

where P(.) again denotes the probability of the event in parenthesesxand
some constant value of the random vectorThe notationk < x, means that each
component of the vector is less than or equal to the respective component of the
vectorxg. The multivariate cdf in Eq. (2.7) has similar properties to that ahgle
random variable. Itis a nondecreasing function of each component, with \gilugs
in the interval0 < Fy(x) < 1. When all the components &f approach infinity,
Fy(x) achieves its upper limit; when any component; — —oo, Fx(x) = 0.

The multivariate probability density functign (x) of x is defined as the derivative
of the cumulative distribution functiof (x) with respect to all components of the
random vectok:

0 0 0

~ Ox1 Oz Om,

Px(X0) (2.8)

Hence

FX(XU):/ px(x)dx:/ , / , / vn’px(x)d.rn...dmgdml
J —o0 J—o0 J—00 J —o0 (29)
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wherez ; is theith component of the vector,. Clearly,

+oo
/ px(x)dx =1 (2.10)
J —00
This provides the appropriate normalization condition that a trukivariate proba-
bility densitypy(x) must satisfy.

In many cases, random variables have nonzero probability density fusctity
on certain finite intervals. An illustrative example of such a case isptes below.

Example 2.2 Assume that the probability density function of a two-dimensional
random vectow = (z,y)" is

32-x)(z+y), €l0,2], yel0,1]
_ _ 7 9 P B 9

z\Z) = Pz y\T,Y) =
Pe(2) = Pay(2,9) {0, elsewhere
Let us now compute the cumulative distribution functionzof It is obtained by
integrating over botlr andy, taking into account the limits of the regions where the
density is nonzero. When either< 0 ory < 0, the density, (z) and consequently
also the cdf is zero. In the region where< » < 2 and0 < y < 1, the cdf is given

by

R = Foya) = [ [ 2 o+ nasay

1

_§T T+ *17‘27—7‘
—7.,y Tty 37 4.,y

In the region wherd) < =z < 2 andy > 1, the upper limit in integrating ovey
becomes equal to 1, and the cdf is obtained by insegtiag 1 into the preceding
expression. Similarly, in the regian > 2 and0 < y < 1, the cdf is obtained by
insertingz = 2 to the preceding formula. Finally, if both > 2 andy > 1, the
cdf becomes unity, showing that the probability dengifyz) has been normalized
correctly. Collecting these results yields

0, z<0ory <0

Say(r+y—i2? —tay), 0<2<20<y<l1
Fo(z) = 2a(1+ 32 — 12?), O<ae<2,y>1

2y(3 + 3v), r>20<y<1

1 x> 2andy > 1

2.1.3 Joint and marginal distributions

The joint distribution of two different random vectors can be handfed similar
manner. In particular, leg be another random vector having in general a dimension
m different from the dimension of x. The vector andy can be concatenated to
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a "supervectorz” = (x”,y7), and the preceding formulas used directly. The cdf
that arises is called thjeint distribution functionof x andy, and is given by

Fyy(x0,¥0) = P(x <%0,y < ¥o) (2.11)

Herex, andy, are some constant vectors having the same dimensioxnsady,
respectively, and Eq. (2.11) defines the joint probability of the exert x, and
y <¥yo.

Thejoint density functiomx y(x, y) of x andy is again defined formally by dif-
ferentiating the joint distribution functiof y (x,y) with respect to all components
of the random vectors andy. Hence, the relationship

X0 Yo
Frey (X0,¥0) = / / Dy (€, m)dndE (2.12)

holds, and the value of this integral equals unity when bgth+ co andy, — oc.
The marginal densitiepy(x) of x andpy (y) of y are obtained by integrating
over the other random vector in their joint density, (x, y):

Px(x) = /:)O Px,y (X, m)dn (2.13)
py(y) = / T (€, y)de (2.14)

Example 2.3 Consider the joint density given in Example 2.2. The marginal densi-
ties of the random variablasandy are

pe@) = [ Fe-ae+nay. zel.

2 +3z-2%) z€]0,2]
o elsewhere

_J3@2+3y), yelo1]
0, elsewhere

2.2 EXPECTATIONS AND MOMENTS

2.2.1 Definition and general properties

In practice, the exact probability density function of a vector or scalaegatandom
variable is usually unknown. However, one can use instead expectafisosne
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functions of that random variable for performing useful analyses anckgsing. A
great advantage of expectations is that they can be estimated directly fralatéhe
even though they are formally defined in terms of the density function.

Let g(x) denote any quantity derived from the random vectorThe quantity
g(x) may be either a scalar, vector, or even a matrix. €Rpectatiorof g(x) is
denoted by Eg(x)}, and is defined by

(o]

E{g(x)} = / g() P () dx (2.15)

— 00

Here the integral is computed over all the componenis ©he integration operation

is applied separately to every component of the vector or element of the matrix

yielding as a result another vector or matrix of the same sizg(xf = x, we get the

expectation Ex} of x; this is discussed in more detail in the next subsection.
Expectations have some important fundamental properties.

1. Linearity. Letx;,7 = 1,... ,m be a set of different random vectors, amgl
i =1,...,m, some nonrandom scalar coefficients. Then
E{) axi} =) aE{x;} (2.16)
i=1 i=1

2. Linear transformationLet x be anm-dimensional random vector, agd and
B some nonrandorh x m andm x [ matrices, respectively. Then

E{Ax} = AE{x}, E{xB}=E{x}B (2.17)

3. Transformation invarianceLety = g(x) be a vector-valued function of the
random vectok. Then

/OC ypy(y)dy = /OO g(x)px(x)dx (2.18)

J =00 J =00

Thus Ey} = E{g(x)}, even though the integrations are carried out over
different probability density functions.

These properties can be proved using the definition of the expectateatop
and properties of probability density functions. They are imporzuctvery helpful
in practice, allowing expressions containing expectations to be dietplivithout
actually needing to compute any integrals (except for possibly in thetese).

2.2.2 Mean vector and correlation matrix

Momentsf a random vectok are typical expectations used to characterize it. They
are obtained wheg(x) consists of products of componentsxof In particular, the
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first moment of a random vecteris called themean vectoim, of x. It is defined
as the expectation of:

o]

my = E{x} = / xXpx (x)dx (2.19)

J —oa
Each component,,, of then-vectormy is given by

[e.e] (o]

Tipx (x)dx = / TiPa, (xi)dx; (2.20)

J =00

ma, = E{a;} = /

J =00

wherep,, (z;) is the marginal density of thi#h component; of x. This is because
integrals over all the other componentsxofeduce to unity due to the definition of
the marginal density.

Another important set of moments consistofrelationsbetween pairs of com-
ponents ofx. The correlation;; between théth andjth component ok is given
by the second moment

rij = E{ziz;} :/ fﬂifﬂ_ipx(x)dXZ/ / TiTjP,a; (Tiy Tj)dzjda;
= —o0 J—o (2.21)

Note that correlation can be negative or positive.
Then x n correlation matrix

R, = E{xx"} (2.22)

of the vectorx represents in a convenient form all its correlationg, being the
elementin rowi and columnj of Ry.
The correlation matriRx has some important properties:

1. Itis asymmetrianatrix: R, = RI.
2. ltis positive semidefinite
a’Ryea >0 (2.23)

for all n-vectorsa. Usually in practiceR, is positive definite, meaning that
for any vector # 0, (2.23) holds as a strict inequality.

3. All the eigenvalues oR are real anchonnegativépositive if Ry is positive
definite). Furthermore, all the eigenvectorsR§ are real, and can always be
chosen so that they ansutually orthonormal

Higher-order moments can be defined analogously, but their discusspasts
poned to Section 2.7. Instead, we shall first consider the correspooelitigal and
second-order moments for two different random vectors.
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2.2.3 Covariances and joint moments

Central moments are defined in a similar fashion to usual moments, buteha
vectors of the random vectors involved are subtracted prior to comptlimex-
pectation. Clearly, central moments are only meaningful above the first.ofthe
guantity corresponding to the correlation mafitx, is called thecovariance matrix
C, of x, and is given by

Cy = E{(x — my)(x — m,)"} (2.24)
The elements
cij = E{(zi — my)(z; —my)} (2.25)

of then x n matrix C, are calledcovariancesand they are the central moments
corresponding to the correlations;; defined in Eq. (2.21).
The covariance matriC, satisfies the same properties as the correlation matrix
Rx. Using the properties of the expectation operator, it is easy to see that
R, = Cx + mxm. (2.26)

X

If the mean vectom, = 0, the correlation and covariance matrices become the
same If necessary, the data can easily be made zero mean by subtracting the
(estimated) mean vector from the data vectors as a preprocessing step.allss &
practice in independent component analysis, and thus in later chapters, plg sim
denote byCy the correlation/covariance matrix, often even dropping the subscript
for simplicity.

For a single random variable the mean vector reduces to its mean value=
E{z}, the correlation matrix to the second mome#itE}, and the covariance matrix
to thevarianceof z

o = E{(z —m,)’} (2.27)

The relationship (2.26) then takes the simple forfag =02 + m2.
The expectation operation can be extended for funciiggssy) of two different
random vectors andy in terms of their joint density:

Egy) = [ [ exypeytxy)iy dx (2.28)

The integrals are computed over all the componenisarfidy.
Of the joint expectations, the most widely used aredfoss-correlation matrix

R, = E{xy"} (2.29)

1in classic statistics, the correlation coefficiepts = ﬁ are used, and the matrix consisting of
“11Cg 7

them is called the correlation matrix. In this book, the etation matrix is defined by the formula (2.22),

which is a common practice in signal processing, neural oedsy and engineering.
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Fig.2.2 Anexample of negative covarianceFig. 2.3  An example of zero covariance be-
between the random variablesandy. tween the random variablasandy.

and thecross-covariance matrix
CXy = E{(X - mx)(y - my)T} (2.30)

Note that the dimensions of the vectar&indy can be different. Hence, the cross-
correlation and -covariance matrices are not necessarily square matrices, aaethey
not symmetric in general. However, from their definitions it follogasily that

R.y =RJ,, Cxy=Cl, (2.31)

If the mean vectors aof andy are zero, the cross-correlation and cross-covariance
matrices become the same. The covariance mélix, of the sum of two random
vectorsx andy having the same dimension is often needed in practice. It is easy to
see that

Cixty = Cx + Cxy + Cyx + Cy (2.32)

Correlations and covariances measure the dependence between the random vari-
ables using their second-order statistics. This is illustrated byolteniing example.

Example 2.4 Consider the two different joint distributions, , (z,y) of the zero
mean scalar random variablesandy shown in Figs. 2.2 and 2.3. In Fig. 2.2,
andy have a clear negative covariance (or correlation). A positive valuenodstly
implies thaty is negative, and vice versa. On the other hand, in the case of Fig. 2.3,
it is not possible to infer anything about the valueydfy observinge. Hence, their
covariance:,, ~ 0.
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2.2.4 Estimation of expectations

Usually the probability density of a random vectors not known, but there is often
available a set o samplesx;, xs, ... ,xg fromx. Using them, the expectation
(2.15) can be estimated by averaging over the sample using the fordd@ [
1 K
Elg(x)} ~ 2 D _s(x) (2.33)

J=1

For example, applying (2.33), we get for the mean veeigr of x its standard
estimator, thesample mean

| K
My = - ; X (2.34)

where the hat ovain is a standard notation for an estimator of a quantity.

Similarly, if instead of the joint densityx  (x,y) of the random vectors and
y, we knowK sample pairgxi,y1), (x2,¥2),- .-, (Xk,yx), We can estimate the
expectation (2.28) by

K
Elg(x,y)} ~ % > 805.)) (2.35)

j=1

For example, for the cross-correlation matrix, this yields the estimdtrmula

K
N 1 T
Ray = }7:; ;¥ (2.36)

Similar formulas are readily obtained for the other correlation type icegR x«,
Cxx, andCyy.

2.3 UNCORRELATEDNESS AND INDEPENDENCE

2.3.1 Uncorrelatedness and whiteness

Two random vectors andy areuncorrelatedf their cross-covariance matri,,
iS & zero matrix:

Cyy = E{(x —m,)(y —-my)"} =0 (2.37)
This is equivalent to the condition

Ryy = E{XyT} = E{X}E{yT} = mme (2.38)

Y
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In the special case of two different scalar random variablasdy (for example,
two components of a random vect;, » andy are uncorrelated if their covariance
Cay IS ZETO:

oy = E{(x —my)(y —my)} =0 (2.39)
or equivalently
rzy = E{zy} = E{z}E{y} = m,;m, (2.40)

Again, in the case of zero-mean variables, zero covariance is equivalent to zero
correlation.

Another important special case concerns the correlations between the congponent
of a single random vector given by the covariance matri®, defined in (2.24). In
this case a condition equivalent to (2.37) can never be met, because each camponen
of x is perfectly correlated with itself. The best that we can achieve is that elifter
components at are mutually uncorrelated, leading to the uncorrelatedness condition

Cy=E{(x my)(x my)’}=D (2.41)
HereD is ann x n diagonal matrix

D =diagci1, 22, -+ ,Cnn) = diaQ(Uil , 052, 0l (2.42)

T

whosen diagonal elements are the varianegs = E{(z; — m,,)’} = ¢;; of the
components; of x.

In particular, random vectors having zero mean and unit covariance (and hence
correlation) matrix, possibly multiplied by a constant variamée are said to be
white Thus white random vectors satisfy the conditions

my =0, Ry=Cyx=1I (2.43)

wherel is then x n identity matrix.
Assume now that an orthogonal transformation defined by ann matrix T is
applied to the random vectar. Mathematically, this can be expressed

y = Tx, whereT”T = TTT =1 (2.44)

An orthogonal matrixT' defines a rotation (change of coordinate axes) inrthe
dimensional space, preserving norms and distances. Assuming thathite, we
get

my, = E{Tx} = TE{x} = Tm, =0 (2.45)
and

C, = R, = E{Tx(Tx)"} = TE{xx"}T"
= TR, T =TT? =1 (2.46)
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showing thaty is white, too. Hence we can conclude that wgteness property is
preserved under orthogonal transformationn fact, whitening of the original data
can be made in infinitely many ways. Whitening will be discussed in metaild
in Chapter 6, because it is a highly useful and widely used preprocessipgnst
independent component analysis.

It is clear that there also exists infinitely many ways to decorrelate thygnati
data, because whiteness is a special case of the uncorrelatedness property.

Example 2.5 Consider the linear signal model
x=As+n (2.47)

wherex is ann-dimensional random or data vect@,ann x m constant matrixs
anm-dimensional random signal vector, anénn-dimensional random vector that
usually describes additive noise. The correlation matrix tfen becomes

R, = E{XXT} = E{(As +n)(As + n)T}
= E{Ass’ AT} + E{Asn”} + E{ns" AT} + E{un”}
= AE{ss"}JA" + AE{sn"} + E{ns"}JA" + E{nn"}
= AR, AT + AR, + Ry AT + Ry, (2.48)

Usually the noise vectat is assumed to have zero mean, and to be uncorrelated with
the signal vectos. Then the cross-correlation matrix between the signal and noise
vectors vanishes:

R.n = E{sn’} = E{s}E{n"} =0 (2.49)
Similarly, R,s = 0, and the correlation matrix of simplifies to
R, = ARAT + R, (2.50)

Another often made assumption is that the noise is white, which meagsHaer
the components of the noise vectoiare all uncorrelated and have equal variance
o2, so that in (2.50)

R, =o’1 (2.51)

Sometimes, for example in a noisy version of the ICA model (Chaptgrthé
components of the signal vectorre also mutually uncorrelated, so that the signal
correlation matrix becomes the diagonal matrix

D, = diagE{s?}, E{s},... ., E{s2}) (2.52)

wheresy, sa,.. . , s, are components of the signal vector Then (2.50) can be
written in the form

Ry, = ADA" + %1 = Z E{s?}a;a] + o°T (2.53)

i=1
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wherea; is theith column vector of the matriA.

The noisy linear signal or data model (2.47) is encountered frequensigiral
processing and other areas, and the assumptions maslamen vary depending
on the problem at hand. It is straightforward to see that the resultgeden this
example hold for the respective covariance matrices as well.

2.3.2 Statistical independence

A key concept that constitutes the foundation of independent componepsanial
statisticalindependenceFor simplicity, consider first the case of two different scalar
random variables andy. The random variable is independent of, if knowing the
value ofy does not give any information on the valuexofFor examplez andy can
be outcomes of two events that have nothing to do with each other, amasignals
originating from two quite different physical processes that are in ap related to
each other. Examples of such independent random variables are the value of a dice
thrown and of a coin tossed, or speech signal and background noiseatirigifrom
a ventilation system at a certain time instant.

Mathematically, statistical independence is defined in terms of probalditgid
ties. The random variablesandy are said to béndependenif and only if

Pay(2,Y) = p2()py (y) (2.54)

In words, the joint density, ,(x,y) of x andy must factorize into the product

of their marginal densitiep, (z) andp,(y). Equivalently, independence could be

defined by replacing the probability density functions in the defini{2.54) by the

respective cumulative distribution functions, which must also befaeble.
Independent random variables satisfy the basic property

E{g(2)h(y)} = E{g(=)}E{h(y)} (2.55)

whereg(z) andh(y) are any absolutely integrable functionsicindy, respectively.
This is because

Efo(hw)} = [ h / " @) h()pay (,y)dyd (2.56)

= [ s@pat)ds [ 1w, )y = Elg()ERRG))
Equation (2.55) reveals that statistical independence is a much strangerty than
uncorrelatedness. Equation (2.40), defining uncorrelatedness, isexbfaim the
independence property (2.55) as a special case whergjbottandh(y) are linear
functions, and takes into account second-order statistics (correlationgamances)
only. However, if the random variables have gaussian distributimiependence
and uncorrelatedness become the same thing. This very special propertgsibgau
distributions will be discussed in more detail in Section 2.5.

Definition (2.54) of independence generalizes in a natural way for more than
two random variables, and for random vectors. key,z, ... , be random vectors
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which may in general have different dimensions. The independence conftitio
X,y,%,...,isthen

Px,y.z. (XY, 2, ... ) = px(X)py (¥)pa(2) - .. (2.57)

and the basic property (2.55) generalizes to

E{ex(x)gy(y)8.(z) ... } = E{gx(x)}E{gy(y)}E{g.(2)} ...
(2.58)

wheregx (x), gy (y). andg,(z) are arbitrary functions of the random variablesy,
andz for which the expectations in (2.58) exist.

The general definition (2.57) gives rise to a generalization of the stdmddion
of statistical independence. The components of the random veet@ themselves
scalar random variables, and the same holds/fandz. Clearly, the components
of x can be mutually dependent, while they are independent with respect to the
components of the other random vectgrandz, and (2.57) still holds. A similar
argument applies to the random vectgrandz.

Example 2.6 First consider the random variablesindy discussed in Examples 2.2
and 2.3. The joint density af andy, reproduced here for convenience,

;(277‘)(7'_‘_1/)/ TE[OIQ],UE[Ovl]
0, elsewhere

pamy(xa y) = {

is not equal to the product of their marginal densitigéz) andp, (y) computed in
Example 2.3. Hence, Eq. (2.54) is not satisfied, and we conclude #raty are not
independent. Actually this can be seen directly by observing that thedemgity
fx.y(z,y) given above is not factorizable, since it cannot be written as a product of
two functionsg(z) andh(y) depending only on: andy.

Considerthen the joint density of a two-dimensional random vecter(z; , z»)”
and a one-dimensional random vecyot y given by [419]

(Z‘] + 31‘2):{/ T1,22 € [07 1]7 Y€ [O 1]
0, elsewhere

Pxy(X,y) = {
Using the above argument, we see that the random vextarsly are statistically
independent, but the componentsandz, of x are not independent. The exact
verification of these results is left as an exercise.

2.4 CONDITIONAL DENSITIES AND BAYES’' RULE

Thus far, we have dealt with the usual probability densities, joersities, and
marginal densities. Still one class of probability density functiomssists of con-
ditional densities. They are especially important in estimation theench will



CONDITIONAL DENSITIES AND BAYES' RULE 29

be studied in Chapter 4. Conditional densities arise when answerirfglibwing
guestion: “What is the probability density of a random vectagiven that another
random vectow has the fixed valug,?” Hereyy is typically a specific realization
of a measurement vectgr

Assuming that the joint densipk y (x, y) of x andy and their marginal densities
exist, theconditional probability density of giveny is defined as

Pxy (%, )
Pxly(X]y) = ——"~ (2.59)
x\y( | ) py(y)
This can be interpreted as follows: assuming that the random vegdies in the
regionyg <y < yo+Ay, the probability thak lies in the regiorx, < x < xg+Ax
iS x|y (X0|yo)Ax. Herexy andy, are some constant vectors, and bath andAy
are small. Similarly,

Pxy(X,Y)
«(ylx) = —=—="== 2.60
In conditional densities, the conditioning quantiyin (2.59) andx in (2.60), is
thought to be like a nonrandom parameter vector, even though it is gcéu@hdom
vector itself.

Example 2.7 Consider the two-dimensional joint densipy ,(z,y) depicted in
Fig. 2.4. For a given constant valug, the conditional distribution

ooy = Pe(0.y)

Hence, itis a one-dimensional distribution obtained by "slicing" tirt distribution
p(z,y) parallel to they-axis at the point: = z,. Note that the denominatpg () is
merely a scaling constant that does not affect the shape of the conditistnigludion
Py|=(y|To) as a function ofj.

Similarly, the conditional distributiom,, (=|yo) can be obtained geometrically
by slicing the joint distribution of Fig. 2.4 parallel to theaxis at the poiny = y,.
The resulting conditional distributions are shown in Fig. 2.5le valuery = 1.27,
and Fig. 2.6 fory, = —0.37.

From the definitions of the marginal densitiggx) of x andpy (y) of y givenin
Egs. (2.13) and (2.14), we see that the denominatorsin (2.59) &) &e obtained
by integrating the joint density y (x, y) over the unconditional random vector. This
also shows immediately that the conditional densities are true prdafyatehsities
satisfying

/ " iy (Ely)de = 1, / " py(mx)dn = 1 (2.61)

If the random vectors andy are statistically independent, the conditional density
Px|y(x|y) equals to the unconditional densjty(x) of x, sincex does not depend
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Fig. 2.4 A two-dimensional joint density of the random variableandy.

in any way ony, and similarlypy . (y|x) = py(y), and both Egs. (2.59) and (2.60)
can be written in the form
Pxy(X,¥) = px(%)py (¥) (2.62)

which is exactly the definition of independence of the random vegtarsdy.

In the general case, we get from Egs. (2.59) and (2.60) two differenéssipns
for the joint density ofk andy:

Px,y (X, ¥) = Py jx(¥[X)Px (X) = pxjy (X]¥)Py () (2.63)
From this, for example, a solution can be found for the density obnditioned on
x:
px\y(x|y)py (y)
Px (%)

where the denominator can be computed by integrating the numerator icaeges

py\x(y|x) = (264)

pelx) = [ " iy (xm)py (m)dn (2.65)

— 00



THE MULTIVARIATE GAUSSIAN DENSITY 31

0.7 T T T T T T T 0.7

06} 1 0.6f

0.4t 1 0.4t

0.2 1 0.2

o1 ] 01

0 L L L L L L 0 L L L L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2 -2 -15 -1 -05 0 05 1 15 2

Fig. 2.5 The conditional probability den- Fig. 2.6 The conditional probability den-
sity py . (y|z = 1.27). sity .|, (z|ly = —0.37).

Formula (2.64) (together with (2.65)) is callBayes’ rule This rule is important
especially in statistical estimation theory. There typically, (x|y) is the conditional
density of the measurement vecigwith y denoting the vector of unknown random
parameters. Bayes’ rule (2.64) allows the computation ofgtbsterior density
py|x(y|x) of the parameterg, given a specific measurement (observation) vector
and assuming or knowing thgior distributionpy (y) of the random parameteys
These matters will be discussed in more detail in Chapter 4.

Conditional expectations are defined similarly to the expectations defaméidr,
but the pdf appearing in the integral is now the appropriate canditidensity. Hence,
for example,

oo

E{g(xy)ly} = / &(€.¥)pary (E]y)dE (2.66)

This is still a function of the random vectgr, which is thought to be honrandom
while computing the above expectation. The complete expectation esfect to
bothx andy can be obtained by taking the expectation of (2.66) with respect to

E{g(x.y)} = E{E{g(x.¥)ly}} (2.67)

Actually, this is just an alternative two-stage procedure for compukia expectation
(2.28), following easily from Bayes’ rule.

2.5 THE MULTIVARIATE GAUSSIAN DENSITY

The multivariate gaussian or normal density has several special proplestiesake it
unigue among probability density functions. Due to its importaneeshall discuss
it more thoroughly in this section.
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Consider amr-dimensional random vectot. It is said to be gaussian if the
probability density function ok has the form

- 1 1 o
Px(X) = e (der o172 P <_§(X ~my) Gy (x —my)

) (2.68)

Recall thatn is the dimension ok, m, its mean, andC, the covariance matrix of
x. The notationlet A is used for the determinant of a matr in this caseCy. It
is easy to see that for a single random variab(e = 1), the density (2.68) reduces
to the one-dimensional gaussian pdf (2.4) discussed briefly in Exa2npleNote
also that the covariance mat®, is assumed strictly positive definite, which also
implies that its inverse exists.

It can be shown that for the density (2.68)

E{x} = m,, E{(x — my)(x — mx)T} = Cy (2.69)

Hence callingn, the mean vector an@, the covariance matrix of the multivariate
gaussian density is justified.

2.5.1 Properties of the gaussian density

In the following, we list the most important properties of theltivariate gaussian
density omitting proofs. The proofs can be found in many books;feeexample,
[353, 419, 407].

Only first- and second-order statistics are needed Knowledge of the mean
vectormy and the covariance matri€, of x are sufficient for defining the multi-
variate gaussian density (2.68) completely. Therefore, all the higlderaroments
must also depend only an, andC,. This implies that these moments do not carry
any novel information about the gaussian distribution. An impdrtansequence of
this fact and the form of the gaussian pdf is that linear processing netiasdd on
first- and second-order statistical information are usually optimafjéorssian data.
For example, independent component analysis does not bring out angévingpm-
pared with standard principal component analysis (to be discussed latgaufssian
data. Similarly, linear time-invariant discrete-time filters used in ctasttistical
signal processing are optimal for filtering gaussian data.

Linear transformations are gaussian If x is a gaussian random vector and
y = Ax its linear transformation, thep is also gaussian with mean vector, =
Am, and covariance matri€, = AC,A”. A special case of this result says that
any linear combination of gaussian random variables is itself gaussias.rdsilt
again has implications in standard independent component analysis: fiassible
to estimate the ICA model for gaussian data, that is, one cannot blieglyrate
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gaussian sources from their mixtures without extra knowledge dcfdabeces, as will
be discussed in Chapter 7.

Marginal and conditional densities are gaussian Consider now two random
vectorsx andy having dimensiona andm, respectively. Let us collect themin a
single random vectat” = (xT, yT) of dimension: + m. Its mean vectom, and
covariance matrixC, are

_(mMyx _ Cx ny
mz_(my>, cz_{cyx CJ (2.70)

Recall that the cross-covariance matrices are transposes of each@her:C/ ., .

Assume now that has a jointly gaussian distribution. It can be shown that the
marginal densitiepx (x) andpy (y) of the joint gaussian densip (z) are gaussian.
Also the conditional densitieg, |, andpy, aren- andm-dimensional gaussian
densities, respectively. The mean and covariance matrix of the conditiorgityden
Py|x are

m

x = My + nyC;] (x — my) (2.71)

y

Cyix = Cy — CyxC; ' Cyy (2.72)

Similar expressions are obtained for the meag,, and covariance matri€, |, of
the conditional density,|,,.

Uncorrelatedness and geometrical structure. We mentioned earlier that
uncorrelated gaussian random variables are also independeptoperty which is
not shared by other distributions in general. Derivation of this irtgyt result is left
to the reader as an exercise. If the covariance matgof the multivariate gaussian
density (2.68) is not diagonal, the componentxdre correlated. Sinc€, is a
symmetric and positive definite matrix, it can always be represented fortine

Cx=EDE" = Z Aiejel (2.73)
i=1

HereE is an orthogonal matrix (thatis, arotation) having asits colusne,, . .. , e,
then eigenvectors 0€,, andD = diag A\, A2, . .. , A,) is the diagonal matrix con-
taining the respective eigenvalugs of C,. Now it can readily be verified that
applying the rotation

u=E"(x —m,) (2.74)
2|tis possible, however, to separate temporally correl@edwhite) gaussian sources using their second-

order temporal statistics on certain conditions. Suchrtigles are quite different from standard indepen-
dent component analysis. They will be discussed in Chater 1
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to x makes the components of the gaussian distributianwficorrelated, and hence
also independent.

Moreover, the eigenvaluels and eigenvectors; of the covariance matrixC,
reveal the geometrical structure of the multivariate gaussian diststhuThe con-
tours of any pdf are defined by curves of constant values of the densiéy bivthe
equationpy(x) = constant. For the multivariate gaussian density, this is equivalent
to requiring that the exponent is a constant

(x —my)TC M (x —my) =¢ (2.75)
Using (2.73), it is easy to see [419] that the contours of the naultite gaussian
are hyperellipsoids centered at the mean veaiqr. The principal axes of the

hyperellipsoids are parallel to the eigenvecteysand the eigenvalues; are the
respective variances. See Fig. 2.7 for an illustration.

A

Fig. 2.7 lllustration of a multivariate gaussian probability dewgsi

2.5.2 Central limit theorem

Still another argument underlining the significance of the gaussiaribdison is
provided by the central limit theorem. Let

k
TE=) 2 (2.76)
i=1
be a partial sum of a sequengeg } of independent and identically distributed random
variablesz;. Since the mean and variancexgf can grow without bound as — oo,
consider instead af,, the standardized variables

g, = Sh " Maw (2.77)

Oz,
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wherem,, ando,, are the mean and variancexf.

It can be shown that the distribution g9f converges to a gaussian distribution
with zero mean and unit variance when- oc. This result is known as theentral
limit theorem. Several different forms of the theorem exist, where assumptions on
independence and identical distributions have been weakened. The central limi
theorem is a primary reason that justifies modeling of many random pheossen
gaussian random variables. For example, additive noise can often beeredsid
arise as a sum of a large number of small elementary effects, and is theretoadipat
modeled as a gaussian random variable.

The central limit theorem generalizes readily to independent and identically dis
tributed random vectors; having a common meam, and covariance matriC,,.
The limiting distribution of the random vector

k
i = % ;(zi ~my,) (2.78)

is multivariate gaussian with zero mean and covariance m@tyix

The central limit theorem has important consequences in independent component
analysis and blind source separation. A typical mixture, or componeiieofiata
vectorx, is of the form

m

T; = Z AijSj (279)

J=1

wherea;;, j = 1,...,m, are constant mixing coefficients ang, j = 1,... ,m,

are them unknown source signals. Even for a fairly small number of sources (say,
m = 10) the distribution of the mixture, is usually close to gaussian. This seems
to hold in practice even though the densities of the different sourcéardrem each
other and far from gaussianity. Examples of this property can be fouGtapter 8,

as well as in [149].

2.6 DENSITY OF A TRANSFORMATION

Assume now that botk andy aren-dimensional random vectors that are related by
the vector mapping

y = g(x) (2.80)

for which the inverse mapping

x=g '(y) (2.81)

exists and is unique. It can be shown that the dengity) of y is obtained from the
densitypy (x) of x as follows:

1
~ |det Jg(g ' (y

py(y) il px(g' (¥)) (2.82)
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HereJg is theJacobian matrix

9g91(x) 8g2(x) .. 9gn(x)
Ox1 Ox1 Ox1
9g91(x) 8g2(x) ..  9gn(x)
Jeo = | T (2.83)
Dor(x)  Bgr(x) . Dga(x)
Oxn Oxn Oxn

andg;(x) is thejth component of the vector functig(x).
In the special case where the transformation (2.80) is linear and naesirsp
thaty = Ax andx = A~ 'y, the formula (2.82) simplifies to

(A ly) (2.84)

py(Y) = | detA|px
If x in (2.84) is multivariate gaussian, thgralso becomes multivariate gaussian, as
was mentioned in the previous section.

Other kinds of transformations are discussed in textbooks of pililyabheory
[129, 353]. Forexample, the suns z:+y, wherer andy are statistically independent
random variables, appears often in practice. Because the transformation bdteveen t
random variables in this case is not one-to-one, the preceding results berapplied
directly. But it can be shown that the pdf efbecomes the convolution integral of
the densities of andy [129, 353, 407].

A special case of (2.82) that is important in practice is the so-called pildpab
integral transformation. I, (x) is the cumulative distribution function of a random
variablex, then the random variable

2= F,(z) (2.85)

is uniformly distributed on the interv@, 1]. This result allows generation of random
variables having a desired distribution from uniformly disti#di random numbers.
First, the cdf of the desired density is computed, and then the invarsgformation
of (2.85) is determined. Using this, one gets random variabledth the desired
density, provided that the inverse transformation of (2.85) can bguted.

2.7 HIGHER-ORDER STATISTICS

Up to this point, we have characterized random vectors primarily usiiggbcond-
order statistics. Standard methods of statistical signal processingsed bn uti-
lization of this statistical information in linear discrete-time sysseffiheir theory is
well-developed and highly useful in many circumstances. Neverthelesdintiied
by the assumptions of gaussianity, linearity, stationarity, etc.

From the mid-1980s, interest in higher-order statistical methodaréo grow
in the signal processing community. At the same time, neural netwakarbe
popular with the development of several new, effective learning paradignbasic
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idea in neural networks [172, 48] is distributed nonlinear processfritpe input
data. A neural network consists of interconnected simple computationalaatied
neurons. The output of each neuron typically depends nonlinearly onptgs.
These nonlinearities, for example, the hyperbolic tangent(tgnhalso implicitly
introduce higher-order statistics for processing. This can be seenganding the
nonlinearities into their Taylor series; for example,

1 3 2 5
tanh(u) = u Y + TEY (2.86)
The scalar quantity: is in many neural networks the inner product w”x of the
weight vectow of the neuron and its input vectar Inserting this into (2.86) shows
clearly that higher-order statistics of the components of the vectoe involved in
the computations.

Independent component analysis and blind source separation requirestbé us
higher-order statistics either directly or indirectly via nonlineasti Therefore, we
discuss in the following basic concepts and results that will be needsd lat

2.7.1 Kurtosis and classification of densities

In this subsection, we deal with the simple higher-order statistfcane scalar
random variable. In spite of their simplicity, these statistics arbligigseful in many
situations.

Consider a scalar random variablavith the probability density functiop,. ().
Thejth momenty; of z is defined by the expectation

o =El}= [ @n@de  j=12.. (2.87)
and thejth central moment; of = respectively by
Wi :E{(mfal)j} = / (ffm7)7p7(£)d€ j=1,2, ...
J—oo (2.88)

The central moments are thus computed around the meanf z, which equals
its first momentn;. The second moment, = E{z?} is the average power af.
The central momentg, = 1 andu; = 0 are insignificant, while the second central
momentu, = o2 is the variance of..

Before proceeding, we note that there exist distributions for whitlhe mo-
ments are not finite. Another drawback of moments is that knowing theza dot
necessarily specify the probability density function uniquely. Faataly, for most
of the distributions arising commonly all the moments are finite thed knowledge
is in practice equivalent to the knowledge of their probability der{Sityp].

The third central moment

ps = E{(z —ma,)"} (2.89)
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is called theskewness It is a useful measure of the asymmetricity of the pdf. It
is easy to see that the skewness is zero for probability densities thatraneetric
around their mean.

Consider now more specifically fourth-order moments. Higher thartticander
moments and statistics are used seldom in practice, so we shall not diseoss t
The fourth momenty, = E{z*} is applied in some ICA algorithms because of its
simplicity. Instead of the fourth central momemt = E{(x — m,)*}, the fourth-
order statistics called thleurtosisis usually employed, because it has some useful
properties not shared by the fourth central moment. Kurtosis willdreveld in the
next subsection in the context of the general theory of cumulantst isudiscussed
here because of its simplicity and importance in independent componersiaraaiyg
blind source separation.

Kurtosis is defined in the zero-mean case by the equation

kurt(z) = E{z*} — 3[E{2*}]? (2.90)
Alternatively, the normalized kurtosis

_ E{z*}

(1) = ———= — 291

k(x) EEaE 3 (2.91)
can be used. For whitened datéz2} = 1, and both the versions of the kurtosis
reduce to

kurt(z) = &(z) = E{z*} -3 (2.92)

This implies that for white data, the fourth momer{tzE} can be used instead of the
kurtosis for characterizing the distribution of Kurtosis is basically a normalized
version of the fourth moment.

A useful property of kurtosis is its additivity. It andy are two statistically
independent random variables, then it holds that

kurt(z + y) = kurt(z) + kurt(y) (2.93)

Note that this additivity property does not hold for the fourthmemt, which shows
an important benefit of using cumulants instead of moments. Also, fosaaar
parameteg,

kurt(Bz) = B*kurt(x) (2.94)

Hence kurtosis is not linear with respect to its argument.

Another very important feature of kurtosis is that it is the simplstistical
guantity for indicating the nongaussianity of a random variable. It @ashiown that
if  has a gaussian distribution, its kurtosis Kujtis zero. This is the sense in which
kurtosis is “normalized” when compared to the fourth moment, whictoizero for
gaussian variables.

A distribution having zero kurtosis is called mesokurtic in statitliterature.
Generally, distributions having a negative kurtosis are said tsuiaussiar{or
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Fig. 2.8 Example of a zero-mean uniform density.

platykurtic in statistics). If the kurtosis is positive, the resfive distribution is
calledsupergaussiaffor leptokurtic). Subgaussian probability densities tend to be
flatter than the gaussian one, or multimodal. A typical supergaussiamlytity
density has a sharper peak and longer tails than the gaussian pdf.

Kurtosis is often used as a quantitative measure of the nongaussiaitgndom
variable or signal, but some caution mustthen be taken. The reasorttstkattosis
of a supergaussian signal can have a large positive value (the maxamnuofimity in
principle), but the negative value of the kurtosis of a subgaussgaral is bounded
below so that the minimum possible value-i€ (when variance is normalized to
unity). Thus comparing the nongaussianity of supergaussian andssgign signals
with each other using plain kurtosis is not appropriate. Howeverpkigtcan be
used as a simple measure of nongaussianity if the signals to be compadtae
same type, either subgaussian or supergaussian.

In computer simulations, an often used subgaussian distributidreisriform
distribution Its pdf for a zero-mean random variahlés

1
_Jsa TE [—a,a 295
P+(2) {0, elsewhere (2.95)

where the parameter determines the width (and height) of the pdf; see Fig. 2.8.
A widely used supergaussian distribution is thaplacian or doubly exponential
distribution. Its probability density (again assuming zero mean) is

pe(x) = %exp(—/\\w\) (2.96)
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Fig. 2.9 Examples of a Laplacian density.

The only parametex > 0 determines both the variance and the height of the peak of
the Laplacian density. It is easy to see that increasing the paramdémreases the
variance of the Laplacian distribution and makes its peak val@eatz = 0 higher;
see Fig. 2.9.

Both the uniform and Laplacian density can be obtained as special cases of the
generalized gaussian or exponential power family of pdf's [53, 256]. gdreral
expression of the densities belonging to this family is (for zero mean)

_ R )
pz () = Cexp < E{[71] (2.97)
The positive real-valued power determines the type of distribution, addis a
scaling constant which normalizes the distribution to unit area (seg. [5The
expectation in the denominator is a normalizing constant as well.) lpdnameter

v = 2, the usual gaussian density is obtained. The choieel yields the Laplacian
density, andv — oo the uniform density. The parameter values 2 in (2.97)
give rise to supergaussian densities, and 2 to subgaussian ones. Impulsive-type
distributions are obtained from (2.97) wher< v < 1.

2.7.2 Cumulants, moments, and their properties

Now we proceed to the general definition of cumulants. Assumeathigta real-
valued, zero-mean, continuous scalar random variable with probabilitytgéunsc-
tion p, (x).
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The firstcharacteristic functionp(w) of z is defined as the continuous Fourier
transform of the pdp,. (x):

o

o) = E{exp(wn)} = [ exp(awaps (a)ds (2.98)
wherey) = /-1 andw is the transformed variable correspondingito Every
probability distribution is uniquely specified by its characteristindtion, and vice
versa [353]. Expanding the characteristic functigfw) into its Taylor series yields
[353, 149]

[e%e} oo ’Ek w k oo w k
o) = [ (Z' o) >pm<m>dm=§E{z’“}%

YT \k=0

(2.99)

Thus the coefficient terms of this expansion are momefi$ Eof z (assuming that
they exist). For this reason, the characteristic funcfién) is also called thenoment
generating function

Itis often desirable to use tisecond characteristic functiaf(w) of , orcumulant
generating functioffior reasons to be discussed later in this section. This function is
given by the natural logarithm of the first characteristic function&2.9

9(w) = In(p(w)) = In(Efexp(wz)}) (2.100)

The cumulantsk;, of x are defined in a similar way to the respective moments as
the coefficients of the Taylor series expansion of the second characteuistigohn
(2.100):

n k
Jw
dw) =Y o k!) (2.101)
k=0
where thekth cumulant is obtained as the derivative
. dRo(w
ke = ()" f(k ) (2.102)
w™ w=0
For a zero mean random variahkiethe first four cumulants are
k1 =0, ky=E{2?}, k3=E{z*}, and (2.103)

ki = E{a'} - 3[E{«*})”

Hence the first three cumulants are equal to the respective moments, andrtihe f
cumulantx, is recognized to be the kurtosis defined earlier in (2.90).

We list below the respective expressions for the cumulants when the B{edn
of z is nonzero [319, 386, 149].

k1 = E{z}
ks = Ela?} — [E{z )P
k3 = E{2®} — 3E{z” }E{z} + 2[E{z}]? (2.104)

ki = Efa'} — 3[E{e?})? — 4E{+*}E{x} + 12E{a* }[E{x}]* — 6[E{a})’
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These formulas are obtained after tedious manipulations of the second ehati@ct
function¢(w). Expressions for higher-order cumulants become increasingly cample
[319, 386] and are omitted because they are applied seldom in practice.

Consider now briefly the multivariate case. bebe a random vector ang, (x)
its probability density function. The characteristic functiorkab again the Fourier
transform of the pdf

(o]

p(w) = Elexp(wx)} = [ explumips(x)dx (2.105)

— 00

wherew is now a row vector having the same dimensiorxagnd the integral is
computed over all components®f The moments and cumulantsxofire obtained
in a similar manner to the scalar case. Hence, momentsaoé coefficients of the
Taylor series expansion of the first characteristic functidw ), and the cumulants
are the coefficients of the expansion of the second characteristic fungion=
In(p(w)). In the multivariate case, the cumulants are often calteds-cumulants
in analogy to cross-covariances.

It can be shown that the second, third, and fourth order cumulants fooaresan
random vectok are [319, 386, 149]

cum(z;, z;) =E{z;z;}
cumz;, z;, xy) =E{z;z;z1}
cumz;, z;, xx, v) =E{z;z;zr2} — E{z;z; }E{zrzi} (2.106)
— E{zizi}E{z;z;} — E{z;z;}E{z;zs}

Hence the second cumulant is equal to the second morent |, which in turnis
the correlation-;; or covariance:;; between the variables andz;. Similarly, the
third cumulant curtz;, z;, z) is equal to the third moment{&;z;x; }. However,
the fourth cumulant differs from the fourth momen{sgz;x,z;} of the random
variablese;, z;, z, andz;.

Generally, higher-order moments correspond to correlations used in secoed
statistics, and cumulants are the higher-order counterparts of covariamBh.
moments and cumulants contain the same statistical information, becauskctsm
can be expressed in terms of sums of products of moments. Itis ustefiyable to
work with cumulants because they presentin a clearer way the additionahiztion
provided by higher-order statistics. In particular, it can be showndiaiulants have
the following properties not shared by moments [319, 386].

1. Letx andy be statistically independent random vectors having the same
dimension, then the cumulant of their surns x + y is equal to the sum of the
cumulants ofk andy. This property also holds for the sum of more than two
independent random vectors.

2. If the distribution of the random vector or process multivariate gaussian,
all its cumulants of order three and higher are identically zero.
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Thus higher-order cumulants measure the departure of a random vectoa fyaus-
sian random vector with an identical mean vector and covariance matrix. This
property is highly useful, making it possible to use cumulantseiracting the
nongaussian part of a signal. For example, they make it possibledoegdditive
gaussian noise corrupting a nongaussian signal using cumulants.

Moments, cumulants, and characteristic functions have several othesrfiesp
which are not discussed here. See, for example, the books [149, 319pB&G)re
information. However, it is worth mentioning that both moments andhulants
have symmetry properties that can be exploited to reduce the compatdtiad in
estimating them [319].

For estimating moments and cumulants, one can apply the procedureicechich
Section 2.2.4. However, the fourth-order cumulants cannot be estimiagady, but
one must first estimate the necessary moments as is obvious from)(2Pr@6tical
estimation formulas can be foundin [319, 315].

A drawback in utilizing higher-order statistics is that reliable estiorabf higher-
order moments and cumulants requires much more samples than for secend-ord
statistics [318]. Another drawback is that higher-order statistics earely sensitive
to outliers in the data (see Section 8.3.1). For example, a few datdesahgving the
highest absolute values may largely determine the value of kurtosgherHbrder
statistics can be taken into account in a more robust way by using theneanl|
hyperbolic tangent functiotanh(u), whose values always lie in the interyal1, 1),
or some other nonlinearity that grows slower than linearly with itaiargnt value.

2.8 STOCHASTIC PROCESSES *

2.8.1 Introduction and definition

In this sectiort we briefly discuss stochastic or random processes, defining what
they are, and introducing some basic concepts. This material is not neeblasién
independent component analysis. However, it forms a theoretical baddiridr
source separation methods utilizing time correlations and temporahiatoon in
the data, discussed in Chapters 18 and 19. Stochastic processes are dealt with
more detail in many books devoted either entirely or partly to the topée for
example [141, 157, 353, 419].

In short, stochastic or random processes are random functions of tioehaStic
processes have two basic characteristics. First, they are functiomefdefined
on some observation interval. Second, stochastic processes are rand@nsémse
that before making an experiment, it is not possible to describe exaetlyaveform
that is observed. Due to their nature, stochastic processes are well suiteel t
characterization of many random signals encountered in practical applicatiohs, su
as voice, radar, seismic, and medical signals.

3An asterisk after the section title means that the sectioncige advanced material that may be skipped.
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Fig. 2.10 Sample functions of a stochastic process.

Figure 2.10 shows an example of a scalar stochastic process represened by t
set of sample functionéz;(t)}, 7 = 1,2,... ,n. Assume that the probability of
occurrence of theth sample functior;(¢) is P;, and similarly for the other sample
functions. Suppose then we observe the set of wavef¢uy@)}, j = 1,2,... ,n,
simultaneously at some time instant ¢;, as shown in Figure 2.10. Clearly, the
values{z;(t1)}, j = 1,2,...,n of then waveforms at timeg; form a discrete
random variable withh possible values, each having the respective probability of
occurrence?;. Consider then another time instant t¢,. We obtain again a random
variable{z; (fg)} which may have a different distribution thdum; (¢1)}.

Usually the number of possible waveforms arising from an experiménfinitely
large due to additive noise. At each time instant a continuous randaatighaving
some distribution arises instead of the discrete one discussed aboweveét, the
time instantsty, ¢2, ..., on which the stochastic process is observed are discrete
due to sampling. Usually the observation intervals are equispaced, anektliting
samples are represented using integer indigé$) = z; (t1), z;(2) =x;(t2),... for
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notational simplicity. As a result, a typical representation for a sietib process
consists of continuous random variables at discrete (integer) tirteniiss

2.8.2 Stationarity, mean, and autocorrelation function

Consider a stochastic proce§s;(t)} defined at discrete times, t», ... ,t;. For
characterizing the procegs;(t)} completely, we should know the joint probability
density of all the random variablés ; (1)}, {z; (t2)}, ..., {z;(tx)}. The stochastic
process is said to bstationary in the strict sens# its joint density is invariant
under time shifts of origin. That is, the joint pdf of the procespehds only on the
differences; — t; between the time instants, ¢», . .. , ¢ but not directly on them.

In practice, the joint probability density is not known, and its eation from
samples would be too tedious and require an excessive humber of samgrei$ ev
they were available. Therefore, stochastic processes are usually charactegredin
of their first two moments, namely the mean and autocorrelation or autoaoeari
functions. They give a coarse but useful description of the digioh. Using
these statistics is sufficient for linear processing (for example filggof stochastic
processes, and the number of samples needed for estimating them remains teasonab

Themean functiorof the stochastic procegs (¢)} is defined

ma(®) = E{a0)} = [ 2(Opan =)z (0 (2.107)

Generally, this is a function of time However, when the proce$s(t)} is stationary,

the probability density functions of all the random variables cowasing to different

time instants become the same. This common pdf is denoted (ay. In such a

case, the mean function, (¢) reduces to a constant mear. independent of time.
Similarly, thevariance functiorof the stochastic proceg$s(t)}

72(0) = Ela0) —m, 0P} = [ () = ma0 g weiat)

becomes a time-invariant constarjtfor a stationary process.
Other second-order statistics of a random prodess) } are defined in a similar
manner. In particular, thautocovariance functioof the proces$z(¢)} is given by

a(t,7) = coVfa(t), 2(t — 7)] = E{[w(t) — m (8)][a(t —7) — ma(t — 7))}
(2.109)

The expectation here is computed over the joint probability densithefandom
variablese(t) andz(t — 1), wherer is the constant time lag between the observation
timest andt — 7. For the zero lag = 0, the autocovariance reduces to the variance
function (2.108). For stationary processes, the autocovariance fan@in09) is
independent of the time but depends on the lag ¢, (t,7) = ¢, (7).

Analogously, theautocorrelation functiorof the procesgz(t)} is defined by

ro(t, 7) = E{x(t)x(t — 1)} (2.110)
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If {z(t)} is stationary, this again depends on the timedamnly: r, (¢, 7) = r, (7).
Generally, if the mean functiom., (¢) of the process is zero, the autocovariance and
autocorrelation functions become the same. If thedag 0, the autocorrelation
function reduces to the mean-square functift, 0) = E{z?(¢)} of the process,
which becomes a constant(0) for a stationary procesge(t)}.

These concepts can be extended for two different stochastic processes
and{y(t)} in an obvious manner (cf. Section 2.2.3). More specifically,dfvss-
correlation functionr,, (¢, 7) and thecross-covariance function,, (¢, 7) of the
processe$z(t)} and{y(¢)} are, respectively, defined by

ray(t,7) = E{a(t)y(t — 7)} (2.111)

Cay(t,7) = E{[2(t) — ma (D]ly(t — 7) —my (t — 7))}
(2.112)

Several blind source separation methods are based on the use of crosaroevar
functions (second-order temporal statistics). These methods wilideeigbed in
Chapter 18.

2.8.3 Wide-sense stationary processes

A very important subclass of stochastic processes consistglefsense stationary
(WSS) processes, which are required to satisfy the following pragzerti

1. The mean functiom,(t) of the process is a constant, for all ¢.

2. The autocorrelation function is independent of a time shift:E)z(t — 7)}
=r.(7) forall t.

3. The variance, or the mean-square vaty€)) = E{z?(t)} of the process is
finite.

The importance of wide-sense stationary stochastic processes stentsvrdacts.
First, they can often adequately describe the physical situation. Manyigalact
stochastic processes are actually at least mildly nonstationary, meaninfefrat
statistical properties vary slowly with time. However, such processesiarally
on short time intervals roughly WSS. Second, it is relatively easy velde useful
mathematical algorithms for WSS processes. This in turn follows fionitihg their
characterization by first- and second-order statistics.

Example 2.8 Consider the stochastic process
z(t) = acos(wt) + bsin(wt) (2.113)

wherea andb are scalar random variables anda constant parameter (angular
frequency). The mean of the process) is

m,(t) = E{z(t)} = E{a} cos(wt) + E{b} sin(wt) (2.114)
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and its autocorrelation function can be written

r.(t,7) = E{z(t)z(t — 1)}

_ %E{GQ}[cos(w(Qt — 7)) + cos(—wr)]

+ %E{bQ}[— cos(w(2t — 7)) + cos(—wT)]
+ E{ab}[sin(w(2t — 7)] (2.115)

where we have used well-known trigonometric identities. Clearly,piocess:(t)
is generally nonstationary, since both its mean and autocorrelationdasaepend
on the timef.

However, if the random variablesandb are zero mean and uncorrelated with
equal variances, so that

E{a} =E{b} =E{ab} =0  E{a?} = E{p*}

the mean (2.114) of the process becomes zero, and its autocorrelationrfiyActits)
simplifies to
7. (1) = E{a’} cos(wT)

which depends only on the time lag Hence, the process is WSS in this special case
(assuming that E?} is finite).

Assume now thafz(t)} is a zero-mean WSS process. If necessary, the process
can easily be made zero mean by first subtracting its mean It is sufficient to
consider the autocorrelation functiep(r) of {x(¢)} only, since the autocovariance
functionc, (7) coincides with it. The autocorrelation function has certain properties
that are worth noting. First, it is an even function of the time#ag

Te(—T) = 14(7) (2.116)

Another property is that the autocorrelation function achieves its maximbsolute
value for zero lag:

—r,(0) <7 (1) <1y (0) (2.117)

The autocorrelation function, (7) measures the correlation of random variables
z(t) andz(t — 7) that arer units apart in time, and thus provides a simple measure
for the dependence of these variables which is independent of the tioe to the
WSS property. Roughly speaking, the faster the stochastic proceasatieetwith
time around its mean, the more rapidly the values of the autocorrelatiartion
r.(7) decrease from their maximum (0) ast increases.

Using the integer notation for the sampleg) of the stochastic process, we can
represent the last + 1 samples of the stochastic process at timesing the random
vector

x(n) = [z(n),z(n — 1),... ,z(n — m)]T (2.118)
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Assuming that the values of the autocorrelation functigi®), 7, (1), ... , 7, (m) are
known up to a lag ofn. samples, thém + 1) x (m + 1) correlation (or covariance)
matrix of the proces$z(n)} is defined by

7. (0) r2(1) r(2) e (m)
re(1) r.(0) re(1) re(m—1)
Rx - .
. . (2.119)
re(m) ry(m—-1) r;(m—-2) --- r(0

The matrixRx satisfies all the properties of correlation matrices listed in Section
2.2.2. Furthermore, it is a Toeplitz matrix. This is generally defireethat on each
subdiagonal and on the diagonal, all the elements of Toeplitz matrix arsatine.
The Toeplitz property is helpful, for example, in solving linear egpreg, enabling
use of faster algorithms than for more general matrices.

Higher-order statistics of a stationary stochastic proe€s$ can be defined in an
analogous manner. In particular, the cumulants(ef) have the form [315]

cum,, () = E{a(i)=(i +5)}
CUMy,. (4, k) = E{z(i)z(i + j)z(i + k)} (2.120)
CUM,.. (4, k, 1) = E{z())z(i + j)z(i + k)z(i + 1)}
— E{(i)r () ELe () (D)} — Efe(@)a (k) }E{z()a(D)}
~ (i) ()} () ()}

These definitions correspond to the formulas (2.106) given earlieafgeneral
random vectok. Again, the second and third cumulant are the same as the respective
moments, but the fourth cumulant differs from the fourth moment(©) = (i+j) = (i+

k)x(i +1)}. The second cumulant cum(j) is equal to the autocorrelation (j)

and autocovariance, (7).

2.8.4 Time averages and ergodicity

In defining the concept of a stochastic process, we noted that at each fixed time
instantt = ¢, the possible values(t,) of the process constitute a random variable
having some probability distribution. An important practical Ipleim is that these
distributions (which are different at different times if the processadsstationary)
are not known, at least not exactly. In fact, often all that we have is pessample of
the process corresponding to each discrete time index (since time canstopiped
to acquire more samples). Such a sample sequence is catésdization of the
stochastic process. In handling WSS processes, we need to know in mosirdgses
the mean and autocorrelation values of the process, but even they are ditemuan

A practical way to circumvent this difficulty is to replace the usual expectatid
the random variables, callethsemble averaggdsy long-term sample averagegione
averagezomputed from the available single realization. Assume that this realizat
containsK samplesi(1),z(2),... ,z(K). Applying the preceding principle, the
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mean of the process can be estimated using its time average

K

1, (K) = % > a(k) (2.121)
k=1

and the autocorrelation function for the lag valuesing

R 1 K—I

o (I, K) = . kz_:] z(k 4+ 1)z(k) (2.122)
The accuracy of these estimates depends on the numbsrsamples. Note also
that the latter estimate is computed over #ie- [ possible sample pairs having the
lag! that can be found from the sample set. The estimates (2.122) are uniuased,
if the number of paird{ — [ available for estimation is small, their variance can be
high. Therefore, the scaling factéf — [ of the sum in (2.122) is often replaced by
K in order to reduce the variance of the estimated autocorrelation vajues<),
even though the estimates then become biased [169]K As oc, both estimates
tend toward the same value.

The stochastic process is calledjodicif the ensemble averages can be equated
to the respective time averages. Roughly speaking, a random processdevigh
respect to its mean and autocorrelation function if it is stationary. A migoEous
treatment of the topic can be found for example in [169, 353, 141].

For mildly nonstationary processes, one can apply the estimation Fasr(1121)
and (2.122) by computing the time averages over a shorter time inthriag which
the process can be regarded to be roughly WSS. It is important to kegpnthi
mind. Sometimes formula (2.122) is applied in estimating the autelation values
without taking into account the stationarity of the process. The camesegs can
be drastic, for example, rendering eigenvectors of the correlation m&ri9)
useless for practical purposes if ergodicity of the process is in realityssly invalid
assumption.

2.8.5 Power spectrum

A lot of insight into a WSS stochastic process is often gained by repiiagahin
the frequency domain. Theower spectrunor spectral densitpf the process:(n)
provides such a representation. It is defined as the discrete Fourieotrarsfthe
autocorrelation sequeneg(0), r,(1),...:

(o]

Se(w) = Y ra(k)exp(—jkw) (2.123)

k=—00

where ) = /—1 is the imaginary unit andv the angular frequency. The time
domain representation given by the autocorrelation sequence of the process can
be obtained from the power spectrufp(w) by applying the inverse discrete-time
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Fourier transform

re (k) = % / Sz (w) exp(gkw)dw, E=12,...
S (2.124)

Itis easy to see that the power spectrum (2.123) is always real-valuedaenka,
periodic function of the angular frequengy Note also that the power spectrum is a
continuous function of, while the autocorrelation sequence is discrete. In practice,
the power spectrum must be estimated from a finite number of autocasrelaiiues.

If the autocorrelation values, (k) — 0 sufficiently quickly as the lag grows large,
this provides an adequate approximation.

The power spectrum describes the frequency contents of the stochastisgro
showing which frequencies are present in the process and how much power they
possess. For a sinusoidal signal, the power spectrum shows a sharptpiésak
oscillating frequency. Various methods for estimating power spectrdiaceissed
thoroughly in the books [294, 241, 411].

Higher-order spectra can be defined in a similar manner to the power spectrum
as Fourier transforms of higher-order statistics [319, 318]. Gontro the power
spectra, they retain information about the phase of signals, and hamd foany
applications in describing nongaussian, nonlinear, and nonmininhasepsignals
[318, 319, 315].

2.8.6 Stochastic signal models

A stochastic process whose power spectrum is constant for all frequenisiealled
white noise Alternatively, white noise)(n) can be defined as a process for which
any two different samples are uncorrelated:

k=0

2
Oy

ry (k) = E{v(n)v(n — k)} = {

Hereo? is the variance of the white noise. It is easy to see that the power spectrum
of the white noise isS,(w) = o2 for all w, and that the formula (2.125) follows
from the inverse transform (2.124). The distribution of thedam variablev(n)
forming the white noise can be any reasonable one, provided that thdesaanp
uncorrelated at different time indices. Usually this distribution isuased to be
gaussian. The reason is that white gaussian noise is maximally randonséecsu
two uncorrelated samples are also independent. Furthermore, such a roaiesspr
cannot be modeled to yield an even simpler random process.

Stochastic processes or time series are frequently modeled in teeatooégres-
sive (AR) processed hey are defined by the difference equation

z(n) = — Z a;z(n —1i) +v(n) (2.126)



CONCLUDING REMARKS AND REFERENCES 51

wherewv(n) is a white noise process, angl, . .. ,a)s are constant coefficients (pa-
rameters) of the AR model. The model ordérgives the number of previous samples
on which the current value(n) of the AR process depends. The noise teim)
introduces randomness into the model; without it the AR model wbelcompletely
deterministic. The coefficients,, ... ,ay; of the AR model can be computed us-
ing linear techniques from autocorrelation values estimated from the aleadata
[419, 241, 169]. Since the AR models describe fairly well many natwoghsstic
processes, for example, speech signals, they are used in many applicatit@8. |
and BSS, they can be used to model the time correlations in each source process
s;(t). This sometimes improves greatly the performance of the algorithms.

Autoregressive processes are a special casautifregressive moving average
(ARMA)processes described by the difference equation

z(n) + Z a;x(n —i) =v(n) + Z biv(n —1i) (2.127)

Clearly, the AR model (2.126) is obtained from the ARMA model (2)1&hen
the moving average (MAgoefficientsh,, ... , by are all zero. On the other hand,
if the AR coefficientss; are all zero, the ARMA process (2.127) reduces to a MA
process of ordetN. The ARMA and MA models can also be used to describe
stochastic processes. However, they are applied less frequently, becans¢i@st

of their parameters requires nonlinear techniques [241, 419, 411]. SAppleadix

of Chapter 19 for a discussion of the stability of the ARMA model d@ndiiilization

in digital filtering.

2.9 CONCLUDING REMARKS AND REFERENCES

In this chapter, we have covered the necessary background on the theorgdaifran
vectors, independence, higher-order statistics, and stochastic procesgies. that
are needed in studying independent component analysis and blind sourcisapar
have received more attention. Several books that deal more thorougtiythvei
theory of random vectors exist; for example, [293, 308, 353]. Stdthpocesses
are discussed in [141, 157, 353], and higher-order statistics ir].[386

Many useful, well-established techniques of signal processing, statiatid other
areas are based on analyzing random vectors and signals by means of their first- and
second-order statistics. These techniques have the virtue that thesuaiéy fairly
easy to apply. Typically, second-order error criteria (for example, the regaare
error) are used in context with them. In many cases, this leads to linegi